Thursday, September 21, 2017

Malawi yields oldest-known DNA from Africa

Emory anthropologist Jessica Thompson next to Malawi rock art paintings, likely made by hunter-gatherers. Thompson's work in Malawi is part of a major new paper in the journal Cell, filling in thousands of years of human prehistory of hunter-gatherers in Africa. (Photo by Suzanne Kunitz)

By Carol Clark

Emory anthropologist Jessica Thompson was at a human origins conference years ago when she heard a presenter lament: “Of course, there is no ancient DNA from Africa because of the poor preservation there.”

That’s when it clicked in Thompson’s mind: She had visited a place in Africa — the highlands of northern Malawi — that had neither extremes of heat or wetness — two main environmental factors that degrade DNA. She also knew that scant archaeological research had been done in the region, although a team had unearthed several ancient skeletons there decades ago.

“It’s a strange and fascinating landscape,” says Thompson, who made that 2005 visit as a tourist and was struck by the surreal beauty of the high mountain grassland.

It’s also remote and off the radar of most of the world. “We saw maybe three other tourists while we were there,” she recalls.

That fateful trip laid the groundwork for discoveries of the oldest-known DNA from Africa. The journal Cell just published an analysis of the new discoveries, filling in thousands of years of human prehistory of hunter-gatherers in Africa, led by Harvard geneticist David Reich.



Thompson is second author of the paper. She contributed and described the cultural context for nearly half of the 15 new DNA finds, including the oldest samples. Her fieldwork in Malawi uncovered two human leg bones that yielded 6,100-year-old DNA and her work is ongoing at a site where a newly dated skeleton with 8,100-year-old DNA was recovered many years ago.

In addition to the 6,100-year-old DNA, Thompson’s team in Malawi unearthed other human remains that yielded six more samples ranging in age from about 2,500 to 5,000 years ago. The other DNA in the Cell paper ranges in age from 3,000-to-500 years ago and comes from South Africa, Tanzania and Kenya.

“Malawi is positioned in between where living hunter-gatherers survive,” Thompson says. “For the first time, we can see the distribution of ancient hunter-gatherer DNA across Africa, showing how these populations were connected in the past.”

Ancient hunter-gatherers do not have a lot of living representatives in Africa today, and they occur as remnants of people scattered across the continent. The remains of Malawi hunter-gatherers that Thompson is studying may represent a population that was once thriving but subsequently pushed into marginal areas during the expansion of agriculturalists and pastoralists during the past 3,000 years.

Some of this population may have survived until much more recently.

“There are legends in Malawi of the original people who came there, passed down through oral histories,” Thompson says. “They are described as hunters and little people, short in stature. There is also a story of a last, epic battle — that occurred about 200 years ago — when these people got eradicated.”

Mount Hora, where the oldest DNA included in the Cell paper was obtained, from a woman who lived more than 8,000 years ago. (Photo by Jessica Thompson)

Malawi captivated Thompson during that first visit as a tourist, in 2005. She was a graduate student when she spent a summer working on a dig in the Serengeti. She and two companions decided to make a road trip before returning to the United States, including a stop in Malawi.

The landlocked country is located in southeast Africa, bordered by Zambia, Tanzania and Mozambique. It is one of the least-developed and smallest countries in Africa, about the size of the state of Tennessee, and runs north to south along the Rift Valley. An enormous body of water, Lake Malawi, makes up about one-third of the country.

“My traveling companies wanted to relax by the lake in the lowlands,” Thompson recalls. “I had read about the Malawi highlands and really wanted to see this unique ecosystem, so I convinced them to go there instead.”

Her companions complained of the cold — it’s windy and regularly freezes in the highlands of Malawi and summer temperatures peak at around 65 or 70 degrees Fahrenheit. Despite the cold, Thompson admired the rugged, isolated beauty of rocky outcrops and grasslands studded with orchids and fairy ferns where zebra and shaggy antelope grazed.

Thompson, who joined Emory as an assistant professor of anthropology in 2015, dug through the archaeological literature surrounding Malawi and started making exploratory trips there in 2009. She learned of two digs in the Malawi highlands — in 1950 and 1966 — that revealed human skeletons alongside rich cultural evidence of an extinct hunting-and-gathering lifeway.

Dancers at a festival in Malawi. The people living in the country today are the descendants of the Iron Age agriculturalists and pastoralists who swept across the African continent about 3,000 years ago. (Photo by Jessica Thompson)

The 1950 dig turned out to be led by the renowned archaeologist J. Desmond Clark, who Thompson calls her “academic grandfather.” Although Clark died before Thompson could meet him, he served as the mentor to her mentor, Curtis Marean.

On the slopes of Mount Hora — a striking 1,500-meter peak and a major landmark in the highlands — Clark uncovered two skeletons: A woman who had died at around age 22 and a nearby male, who had died in his 40s. The skeletons had been taken out of the country, to the Livingstone Museum in Zambia, and were never dated.

“It was impossible to accurately do radiocarbon dating on bone in 1950,” Thompson explains. “The skeletons became, quite frankly, forgotten over time.”

Guided by the clues from the previous excavations, Thompson began heading digs in the Malawi highlands. A site at a landmark outcrop, known as Fingira Rock, is particularly isolated, requiring the team to hike up a mountainside to more than 2,000 meters on the Nyika Plateau. “Working there you feel the wind, you feel the chill,” Thompson says.

Poachers are a hazard in the area, along with the occasional black mamba — one of the world’s deadliest snakes.

The Fingira site had not been excavated since 1966. “We were appalled to discover that it had been heavily disturbed since then,” Thompson says. Her team uncovered two human leg bones, from two different adult males, which yielded DNA that was about 6,100 years old.

The leg bone of a hunter-gatherer that lived 6,100 years ago, found at the Fingira Rock site. (Photo by Jessica Thompson)

In the back of a cave, they found fragments of a child’s skull in a termite mound. A tiny leg bone next to it indicated that the remains were from a baby younger than age one. DNA analysis revealed that she had been a girl and radiocarbon dating showed that she had died about 2,500 years ago. The analysis also showed that the bones from the infant and the two men were from the same hunter-gatherer population — even though they were separated by thousands of years of time.

The archaeological sediments suggest that Fingira was a place where the dead were buried, although the skeletal material has become scattered over time. Human bones are mixed with the bones of animals that they hunted and ate, as well as with stone tools and shell beads that they used for ornaments.

“When you visit the site,” Thompson says, “you wonder, why were these people living up here when it’s not the most comfortable conditions you can imagine? What was bringing them here? Why were they burying their dead, over and over again, for many thousands of years, in the same place?”

Meanwhile, Thompson tracked down the skeletons that Clark had discovered at Mount Hora in 1950. She learned they had been moved from Zambia to the University of Cape Town in South Africa.

Here’s where Emory graduate student Kendra Ann Sirak enters the story. Sirak had the distinction of being the last graduate student of Emory anthropologist George Armelagos, one of the founders of the field of paleopathology. He spent decades working with graduate students to study the bones of ancient Sudanese Nubians to learn about patterns of health, illness and death in the past. Sirak is primarily interested in genetics so Armelagos sent her to one of the best ancient DNA labs in the world, in Dublin, Ireland, with samples of the Nubian bones.

After Armelagos died in 2014, at age 77, Thompson stepped in as one of Sirak’s mentors.

Thompson, left, examines fragments of artifacts from the Malawi excavations in her lab with Emory graduate student Kendra Ann Sirak. Sirak helped with the radiocarbon dating and DNA extraction of the "forgotten" 8,100-year-old skeleton from Mount Hora. (Photo by Ann Borden, Emory Photo/Video)

Thompson contacted the curator of the two skeletons from Mount Hora, to ask about the possibility of getting DNA from them. Alan Morris, now Professor Emeritus at the University of Cape Town, had had the same idea. Samples were already slated to be sent to the very same lab where Sirak was working. This new team of researchers — archaeologist, physical anthropologist and graduate student — began the process of extracting ancient DNA from the two forgotten skeletons.

Preliminary attempts were promising. Although yields were low, the DNA of the ancient man and woman looked similar to one another, but distinctive from any living population. Attempts to date them using radiocarbon were unsuccessful, however, until the third try. That’s when the female skeleton revealed her secret: She was 8,100 years old. And her genetics connected her to the same population of hunter-gatherers who died thousands of years later and were found 70 kilometers away at Fingira.

Another surprise revealed by the genetic analysis of the Malawi hunter-gatherers: They did not contribute any detectable ancestry to the people living in Malawi today, the descendants of the Iron Age agriculturalists and pastoralists who began sweeping across the African continent about 3,000 years ago.

“In most parts of Africa, you see quite a bit of admixture,” Thompson says. “When you take genetic samples from modern people who are living today, you find that they are a combination of the folks who were expanding into a region and also the folks who were living there before. In Malawi we see that’s not the case. It appears that there was a complete replacement of the original hunter-gatherer people. They are not just gone as a lifeway, they are actually gone as a people as well.”

One of the mysteries Thompson hopes to solve is how that replacement happened. Was it violent? Was it a sudden or a slow process? Did the entrance of strange new technologies, like pottery and iron working, play a role?

“We can’t use genetics to answer these questions,” Thompson says. “We have to use the archaeology.”

Emory anthropology undergraduates assisting with the Malawi excavations this past summer included, from left: Alexa Rome, Alexandra Davis, Suzanne Kunitz and Aditi Majoe. Graduate student Grace Veatch is on the far right.

She continues to excavate in Malawi, aided by local technicians and other collaborators. This summer, five Emory anthropology students accompanied her in the field: Graduate student Grace Veatch, senior Alexandra Davis, juniors Aditi Majoe and Suzanne Kunitz, and sophomore Alexa Rome. They uncovered more human remains at Mount Hora — a charred bone from a human arm and parts of two legs. These bones, recently dated to between 9,500 and 9,300 years old, show that the Hora site still has many secrets to reveal.

While radiocarbon dating of charcoal samples from just above and below the bones establishes their age, it is not clear whether they will yield DNA. “We don’t have high hopes,” Thompson says, “as they were burned and that tends to create even more preservation problems.”

The students assisted in the tedious work of carefully sifting through grey dust and ash, marking coordinates through GPS and other surveying tools, and recording the data into a computer.

Back in her lab at Emory, Thompson uses the data to generate three-dimensional images of the digs and pinpoint where each bone fragment, shell bead or stone tool was found. Her digital model for the this summer’s Mount Hora dig uses different-colored dots to give a glimpse of how hunter-gatherers were depositing both human remains and ordinary objects from their day-to-day lives over time.

“And then at this point,” Thompson says as she moves her cursor on her computer screen, “you see the introduction of pottery and iron technology. And right after that you see this fundamental change in the way that the site was used. People are no longer going there frequently. They’re no longer making these big bonfires. And they’re no longer interring their dead there.”

Thompson and her students are also sorting through hundreds of gallon-sized Ziploc plastic bags containing fragments from the Malawi sites. “As you excavate,” she explains, “you clean away the dirt and you’re left with all these tiny pieces of stone and bone artifacts. The bones are mostly animals. But every once in a while you find something that looks like it might be human. Any one one of them could be a new individual, a new piece to the story.”

She pulls out a small plastic bag labeled “Human distal phalanx.” It contains a piece of bone about the size of a Tic-Tac. “In this case, we think we have a finger bone, most likely from a child,” Thompson says.

Ultimately, Thompson seeks to understand how and when the earliest members of our species — Stone Age Homo sapiens — interacted with one another and with their environments in Africa.

“One thing that’s really easy to forget, when we look at the way people live today, is that for most of our evolution we lived as hunter-gatherers,” she says. “So if we want to understand our own origins as a species, we have to know what those lifeways looked like in the past.”

Related:
A bone to pick on origins of meat eating
Brain trumps hand in Stone Age tool study
Stone tools from Jordan point to dawn of division of labor 

Wednesday, September 6, 2017

What's it like to be a dog-cognition scientist?

"I can't imagine not living with dogs. That would be really sad for me," says Emory neuroscientist Gregory Berns, with Callie (left) and Cato. His latest book is called "What It's Like to Be a Dog."

Five years ago, Emory neuroscientist Gregory Berns became the first to capture images of actual canine thought processes. To explore the minds of the oldest domesticated species, the Berns lab trained dogs to remain still and alert while undergoing functional Magnetic Resonance Imaging (fMRI) — the same tool that is unlocking secrets of the human brain. The project opened a new door into canine cognition and social cognition of other species.

Berns went on to conduct a series of experiments on dogs, gathering both behavioral and fMRI data on questions such as: How capable are dogs of self-restraint? Do dogs prefer praise from their owners or food? How do dogs process faces in their brains? What’s going on in a dog’s brain when it smells the scent of its owner?

In 2013, Berns wrote a New York Times bestseller called “How Dogs Love Us.” He described how the death of his beloved pug Newton planted the seeds for his eventual switch from the studying the human brain to focus on non-invasive studies of the cognition of dogs and other animals.

In the following Q&A, Berns talks about his new book, “What It’s Like to Be a Dog: And Other Adventures in Animal Neuroscience,” just published by Basic Books. The book focuses on his hopes that understanding how animals think will revolution how we treat them.

Question: Can you talk about all the dogs you’ve had as pets during your life? 

Gregory Berns: When I was a child growing up in Southern California we had two golden retrievers, Pretzel and Popcorn. It’s embarrassing, but my parents always named their dogs after food. I’m not sure why. Most of the children in the area had dogs and horses and we would go traipsing around the hills. Kids and dogs go together.

Berns and Callie
After I was done with medical school and stopped moving around, my wife and I had three pugs, Simon, Newton and Dexter, and then a golden retriever, Lyra.

We now live with our two daughters and have three dogs: Callie, a Feist, which is a Southern squirrel hunting dog; Cato, a Plott hound, which is the state dog of North Carolina; and Argo, a yellow dog of some kind of mix. We also have two bearded dragons and a chameleon.

I can’t imagine not living with dogs. That would be really sad for me.

Q: “What It’s Like to Be a Dog” describes all the experimental work you have done so far with canine cognition. What’s the biggest surprise to come out of your research? 

GB: If you take language out of the picture, what we’re finding is that we see a lot of similarities between dogs and humans. In one study, for instance, we used fMRI to measure the relative value of food versus praise to the dogs and found that almost all the dogs’ brains responded to praise as much, and sometimes more, than to food. We ourselves know how it feels when someone praises us, there’s a positive feeling associated with it. That’s perhaps similar to what dogs are feeling.

We also did a study on dogs and delayed gratification. We found that part of the prefrontal cortex is more active in dogs during self-control. And, just like experiments with humans have found, we showed that the dogs who are better at this task use more of their prefrontal lobes.

Now that we are gaining a basic understanding of canine cognition, we are starting to focus more on the individuality of dogs — what it’s like to be this dog, as opposed to that dog.

Q: You’re also using diffusion tensor imaging (DTI) to study the brains of other mammals, mapping the neural pathways in brains from animals that are long deceased and stored in museum collections. How did this project come about? 

GB: It started in 2015 when we gained access to the brains of two dolphins that had died, and we showed that we could use DTI to map their sensory and motor systems. Dolphins are incredibly intelligent, social animals but they’ve remained relatively mysterious. We provided the first picture of the entire dolphin brain and all the white matter connections inside of it.

This year, we reconstructed the brain architecture and neural networks of the extinct Tasmanian tiger, also known as a thylacine, using two brain specimens from museums, both of which were about 100 years old.

Through a project I call the Brain Ark we’re collecting a digital archive of high-resolution, three-dimensional brain structures of megafauna. It’s publicly available to other researchers to contribute to and draw data from.

Q: What is the ultimate goal of your animal neuroscience research? 

GB: The Brain Ark is an attempt to catalog and study brains of large mammal species before they are gone. Or, as in the case of the Tasmanian tiger, after they’re gone. Many megafauna are in danger of extinction because their habitats are being chopped up in ways that don’t allow them to sustain themselves or to migrate.

In the grand scheme of things, I’d also like to explore the commonalities that we have with other animals. That has important ethical implications for how we treat them and for their right to exist in the first place. Animal welfare laws cover things like abuse — pain and suffering. I think we should go beyond that and acknowledge that animals also have a right to lead a good life — whatever that means for that animal.

Related:
What is your dog thinking?
Do canine's prefer praise or food?
Neuro-imaging maps brain wiring of extinct Tasmanian tiger
First images of dolphin brain circuitry hint at how they sense sound

Wednesday, August 30, 2017

Unveiling of Frankenstein portrait to set stage for year-long celebration of the classic novel


A public unveiling and discussion of a large-scale portrait of Dr. Frankenstein’s creation, described in Mary Shelley’s 1818 novel “Frankenstein," will take place at 7 pm at Emory on Tuesday, September 19. The event will be held at the Schwartz Center for the Performing Arts and is open to all free of charge, but guests must register in advance at http://engage.emory.edu/Frankenstein or call Erin Mosley at 404-727-5048.

The portrait is by renowned artist Ross Rossin, who is on the Emory campus as the 2017-2018 Donna and Marvin Schwartz Artist-in-Residence. Rossin, whose art hangs in the Smithsonian National Portrait Gallery and was exhibited at the United Nations Palace of Nations in Geneva and the Russian Duma in Moscow, is also known to Atlantans as the sculptor/creator of the nine-foot-tall bronze statue of Hank Aaron unveiled earlier this year at SunTrust Park.

Rossin's residency is part of the Ethics and the Arts Program at Emory's Center for Ethics. The program, the only one of its kind in the nation, encourages ethical discourse and debate through and about the arts, and partners with arts organizations to demonstrate the way art challenges ethical perspectives.

This year, the residency coincides with FACE (Frankenstein Anniversary Celebration and Emory), a year-long university-wide celebration of the 200th anniversary of the novel.

The exclusive corporate sponsor of FACE is Turner Classic Movies (TCM), and Emory is providing support through its Science and Society fund.

“One of the most acclaimed and influential works of science fiction ever written, ‘Frankenstein’ continues to shape debates surrounding science and its complications,” says Paul Root Wolpe, director of Emory’s Center for Ethics, which is spearheading FACE. “It’s a permanent part of the dialogue about the dilemmas we face in technological advancement, scientific experimentation and research, bioethics, artificial intelligence, stem cell research and innovation.”

Rossin’s new depiction of Frankenstein’s creation is expected to highlight the broad influence and implications of the landmark novel. Rossin envisioned not the standard movie portrayal, but a portrait based on his vision of Shelley’s intent.

“It’s precisely Mary Shelley’s youth [age 18 when she began the novel] that inspired me to approach my subject differently,” says Rossin. “Unlike all other portrayals before, I prefer to see the Creature as a young man.”

As Rossin points out, Dr. Frankenstein intended “to create something beautiful, young, powerful and promising, like Prometheus. The Creature was supposed to have a future, open a new chapter in human history.”

Those familiar with the story know that Dr. Frankenstein’s good intentions turned ugly and murderous. Rossin says that his portrait of “Adam Frankenstein reflects exactly this kind of tragic duality. In my work the viewer should be able to see both.”

Monday, August 28, 2017

Evolutionary ecology could benefit beekeepers battling diseases

An electron micrograph shows a Verroa destructor mite (right) on an adult honeybee host. The parasitic Varroa mite and the numerous viruses it carries are considered the primary causes of honeybee colony losses worldwide. (USDA photo) 

By Carol Clark

Some commercial beekeeping practices may harm honeybees more than help them, scientists warn in a paper published in the journal Nature Ecology and Evolution.

“Western honeybees — the most important pollinators for U.S. food crops — are facing unprecedented declines, and diseases are a key driver,” says Berry Brosi, an evolutionary biologist at Emory University and a lead author of the review paper. “The way commercial operations are managing honeybees might actually generate more damaging parasites and pathogens by creating selection pressure for higher virulence.”

The paper draws on scientific studies to recommend ways to reduce disease impacts, such as limiting the mixing of bees between colonies and supporting natural bee behaviors that provide disease resistance. The paper also highlights honeybee management practices in need of more research. 

During the past 15 years, ecological and evolutionary approaches have changed how scientists tackle problems of infectious diseases among humans, wildlife and livestock. “This change in thinking hasn’t sunk in with the beekeeping field yet,” says Emory evolutionary biologist Jaap de Roode, co-lead author of the paper. “We wanted to outline scientific approaches to help understand some of the current problems facing beekeepers, along with potential control measures.”

Co-authors of the paper include Keith Delaplane, an entomologist at the University of Georgia, and Michael Boots, an evolutionary biologist at the University of California, Berkeley.

Managed honeybees are important to the production of 39 of the 57 leading crops used for human consumption, including fruits, nuts, seeds and vegetables. In recent years, however, managed honeybee colonies have declined at the rate of more than one million per year, representing annual losses between 30 and 40 percent.

Two drone pupae of the Western honeybee infected with Varroa mites. (Photo by Waugsberg via Wikipedia Commons.)

While pesticides and land-use changes are factors involved in these losses, parasites are a primary driver — especially the aptly named Varroa destructor. The parasitic Varroa mite and the numerous viruses it carries are considered the primary causes of honeybee colony losses worldwide.

Varroa mites are native to Asia, where the Eastern honeybee species co-evolved with them before humans began managing bee colonies on commercial scales. As a result of this co-evolution, the Eastern honeybee developed behaviors — such as intensive mutual grooming — that reduce the mites’ negative impacts.

The Western honeybee species of the United States and Europe, however, has remained relatively defenseless against the mites, which spread to the United States during the late 1970s and 1980s. The mites suck the blood of the bees and reduce their immunity. Even more potentially destructive, however, are the multiple viruses the mites transmit through their saliva. Deformed-wing virus, for instance, can cripple a honeybee’s flying ability and is associated with high bee larval mortality.

Following are some of the potential solutions, in need of further study, outlined in the Nature Ecology & Evolution paper.

Reduce mixing of colonies: A common practice at beekeeping apiaries is to move combs containing brood — eggs and developing worker bees — between colonies. While the practice is meant to equalize colony strength, it can also spread parasites and pathogens.

Colonies are also mixed at regional and national scales. For instance, more than half of all honeybees in the country are involved in almond pollination in California. “For a lot of beekeeping operations, trucking their bees to California for almond pollination is how they make ends meet,” Brosi says. “It’s like the Christmas season for retailers.”

Pollination brokers set up contracts for individual beekeepers on particular almond farms. “If the brokers separated individual beekeeping operations beyond the distance that the average honeybee forages, that could potentially help reduce the mixing of bees and the rate of pathogen transmission between the operations,” Brosi says.
Varroa destructor (USDA)

Improve parasite clearance: Most means of dealing with Varroa mites focus on reducing their numbers in a colony rather than wiping them out, as the mites are developing increased resistance to some of the chemicals used to kill them. Such incomplete treatments increase natural selection for stronger, more virulent parasites. Further compounding the problem is that large commercial beekeeping operations may have tens of thousands of colonies, kept in close quarters.

“In a natural setting of an isolated bee colony living in a tree, a parasite that kills off the colony has nowhere to go,” de Roode explains. “But in an apiary with many other colonies nearby, the cost of parasite virulence goes way down.”

Allow sickened colonies to die out: Keeping bees infected with parasites and viruses alive through multiple interventions dilutes natural selection for disease resistance among the bees. In contrast, letting infections take their course in a colony and using the surviving bees for stock could lead to more resistant bees with fewer disease problems.

Support behavioral resistance: Beekeepers tend to select for bees that are more convenient to manage, but may have behavioral deficiencies that make them less fit. Some honeybees mix their saliva and beeswax with tree resin to form what is known as propolis, or bee glue, to seal holes and cracks in their hives. Studies have also shown that propolis helps keep diseases and parasites from entering the hive and inhibits the growth of fungi, bacteria and mites.

“Propolis is sticky. That annoys beekeepers trying to open hives and separate the components so they try to breed out this behavior,” de Roode says.

The paper concedes that commercial beekeeping operations face major challenges to shift to health management practices rooted in fundamental principles of evolution and ecology.

“Beekeeping is a tough way to make a living, because it operates on really thin margins,” Brosi says. “Even if there are no simple solutions, it’s important to make beekeepers aware of how their practices may affect bees in the long term. And we want researchers to contribute scientific understanding that translates into profitable and sustainable practices for beekeeping.”

Related:
Monarch butterflies use drugs to protect their offspring from parasites
Bees betray their flowers when pollinator species decline
The top 10 policies needed now to protect pollinators

Monday, August 7, 2017

Solar eclipse adds cosmic spin to Emory orientation

“It’s a strange coincidence that the moon at its distance and size almost perfectly covers the sun at its distance and size,” says Emory physicist Sidney Perkowitz. “It makes you stop and wonder — is it just a coincidence? Some people call an eclipse a religious experience. I call it cosmic.” (NASA photo)

By Carol Clark

The Emory University class of 2021 already has a unique distinction: The campus orientation day for the first-year students will occur beneath a nearly total solar eclipse. From about 2:38 to 2:41 pm on Monday, August 21, the moon will cover 97.7 percent of the sun over Atlanta.

A couple of solar telescopes will be set up on the roof of the Mathematics and Science Building between 1 and 4 pm for staff, faculty, students and their family members who want to observe the sun through them — weather permitting. But a pair of certified solar eclipse glasses, a simple pinhole camera — or even the leaves of a tree — will also make it possible to safely view the eclipse anywhere on campus where the sun is visible.

Emory first-year students plan to gather on the Quad between 2:15 and 3 pm for eclipse watching. At the Oxford campus, first-year students will gather in front of the Oxford Science Building starting at 2 pm where there will be music, a solar telescope and sun-themed snacks and drinks. The Emory Police Department will also host group eclipse viewing on the field of the Student Activity and Academic Center at the Clairmont Campus. All students, faculty and staff are welcome to attend these events.

Atlanta Science Tavern has also compiled this list of solar eclipse events in and around Atlanta. 

A total solar eclipse will sweep across a 70-mile-wide area of the United States, starting on the Pacific coast of Oregon and continuing all the way to South Carolina and the Atlantic Ocean. Even though Atlanta lies just beyond the path of totality, if the weather is clear the near-total eclipse will be worth pausing from work or school to go outside and experience.

To begin with, it’s rare. The last time the sun over Atlanta was nearly obscured by the moon was on May 31, 1984, when it was 99.7 percent covered. The New York Times described what happened as the skies began to darken about 20 minutes after noon: “The temperature dropped six degrees, flowers closed their petals, dogs howled, pigeons tucked their heads under their wings as if to sleep and the whole city was bathed in a kind of diffused light, not unlike that accompanying the approach of a severe storm.”

Emory senior  Raveena Chhibber tests out a pair of solar eclipse glasses. The neuroscience and behavioral biology major is on campus this summer working in a psychology lab and plans to take a break to witness the celestial event.

Sidney Perkowitz, Emory emeritus professor of physics, was on campus that day in 1984. He stood outside near the old physics building, now Callaway Hall, beneath a large white oak on the Quad.

“I remember a lot of people came out on the Quad, particularly around this tree,” he says. “It was a joint social experience.”

The darkening effect as the moon began to cover the sun was “eerie,” he says. “It didn’t feel exactly like twilight, it felt like something weirder was going on. It just seemed abnormal.”

Perkowitz watched the light as it passed through the leaves of the tree. “As the ambient light gets reduced, you begin to see multiple images of the crescent sun on the ground below,” Perkowitz says, explaining that each tiny space between the leaves acted as a pinhole-like opening, similar to a camera. “It’s spectacular because you see dozens and dozens of the images, filtered through the leaves.”

Aristotle observed this same phenomenon beneath a tree during a solar eclipse in the fourth century BC. The Greeks were debating at the time whether light moves in straight lines. The projection of the image of the sun through the leaves was evidence that it does, although the principles behind it would remained unresolved for nearly 2,000 years.

The white oak that Perkowitz stood beneath 33 years ago was struck by lightning in 2016 and is no longer there. There are plenty of other trees on campus, however, where eclipse watchers can stand to experience the event.

"An eclipse is a chance to stop and perceive and reflect," says Emory astronomer Erin Bonning. "It proceeds slowly and deliberately, which is not exactly the pace of modern society." (NASA graphic)

Or you can make your own pinhole projector by poking a hole in a piece of cardboard. NASA provides directions and some templates. During the eclipse, you stand with your back to the sun and hold up the cardboard so that light passes through it and hits a wall, the ground or a piece of paper that you hold up to capture a projection of the image of the sun.

Sunglasses do not provide enough protection to look directly at the sun at any time during a partial eclipse. You need special solar viewing glasses, which are available free at Fulton County libraries or can be purchased online. Beware of fakes — the American Astronomical Society provides guidance to help ensure that solar glasses are certified and safe to wear.

Horace Dale, director of the Emory Observatory, will have a limited number of solar-viewing glasses available and will set up two solar telescopes between 1 and 4 pm on the roof of the Mathematics and Science Center — if the weather holds. Take the elevator to the fifth floor of the building and follow the signs to get to the rooftop.

“If it’s just partly cloudy, we should be able to see through the breaks in the clouds,” Dale says. But even the threat of a storm, he adds, will mean having to pack up the expensive equipment to avoid it getting damaged by rain.

The special filters on the solar telescopes will make it possible to directly view the sun safely. “You’ll be able to see the filamentary structure of the sun and any flare activity on the edge of the sun,” Dale says. “There might even be a few planets that pop out.”

An Atlanta native, Dale experienced a partial eclipse here in 1970 when he was six. “I remember my dad telling me not to look at the sun,” he says. “It was a really interesting experience for me.”

Which is why Dale has already explained to the teachers of his son Joey, six, and his daughter Emma, five, that his children will not attend school on August 21. Instead they will be getting an eclipse lesson from their father. Their mother, Jessica, will also be present. A dental hygienist, she has the day off since the dentist is heading for the path of totality and will close the office.

Psychology graduate student Katy Renfroe will pause from working on her thesis to observe the partial eclipse on campus.

Astronomer Erin Bonning, director of the Emory Planetarium, will be in Clayton, Georgia — in the path of totality — during the eclipse. She will be giving a presentation for Goizueta Business School’s orientation of incoming Emory juniors at a retreat center in north Georgia. The BBA class of 2019 not only holds the distinction of being Goizueta Business School’s 100th-anniversary class — it enjoys the bonus of entering orientation with great timing in a great location.

“This will be my first total solar eclipse and I’m excited,” Bonning says. She quickly adds: “I’m cautiously excited because all astronomers know that when something really big is about to happen you don’t want the clouds to hear you talking about it. Clouds are the great enemies of astronomers.”

When Bonning was in fifth grade, in Maryland, she had fervently anticipated a near total-eclipse event. When the big moment finally arrived, it was cloudy and rainy.

She did get to witness a lunar eclipse in Atlanta around 5 am on October 8, 2014. “I got up early and walked around downtown to find a good view,” she says. “It’s breathtaking to see the Earth cast a shadow in space and the moon pass through it. It’s one thing to write down an equation for curving space time, but when you see a visual illustration of these facts it’s so much more moving. It made me feel connected to the universe.”

A woman standing near her during the lunar eclipse had a different reaction. “She said, ‘Huh. I thought it would be more impressive than that,’” Bonning recalls. “I took a deep breath and held my tongue.”

The August 21 solar eclipse is particularly special since the path of totality will stretch from sea to shining sea, across the United States. “It’s unusual because it’s taking place over such a large inhabited stretch of land,” Bonning says. “The last time we had such a grand solar eclipse across America was a century ago.”

Following are Bonning’s tips for observing the solar eclipse, whether you stay in Atlanta or travel to totality.

Plan your activity. “Don’t just hop in the car on August 21 and spontaneously head for the path of totality, or you’re going to see a partial eclipse in a traffic jam,” Bonning says. You can read more about traffic predictions here.

Don’t worry about height. “You don’t need to go to the top of a mountain or the top of a building,” Bonning says. “If you can see the sun, you can see the eclipse. It’s not like getting closer to it will give you a better view.”

Manage your expectations. “While it will be extremely cool to see the eclipse, it’s not going to look like a dragon came out of the sky and devoured the sun. That’s a myth,” Bonning says. “An eclipse is a chance to stop and perceive and reflect. It proceeds slowly and deliberately, which is not exactly the pace of modern society.”

Be in the moment. If you’re not an expert at photographing eclipses, forget trying to get the perfect selfie for social media. “You’ll be better off being open to the experience,” Bonning says. “Observe shifts in the light. Feel the temperature drop. You may notice animals behaving differently.”

Make it a fun, educational experience for kids. While you need to emphasize to young children the importance of not staring directly at the sun with the naked eye during the eclipse, you can do so in a fun way that helps them understand why. Bonning recommends parents visit this Planetary Society site, which includes directions for how to make pinhole projectors, including ones in fancy, pinhole-punched shapes.

“We’re very lucky on Earth,” Perkowitz says. “We have the largest moon of all the planets and it has all kinds of connections to love and romance and poetry. And on top of that, it has this amazing alignment with the sun that provides this incredible sight every so often.”

The moon is only a quarter of a million miles away and much smaller than Earth, he notes, while the sun is 93 million miles distant and is huge — far bigger than all of the planets in the solar system put together.

“It’s a strange coincidence that the moon at its distance and size almost perfectly covers the sun at its distance and size,” Perkowitz says. “It makes you stop and wonder — is it just a coincidence? Some people call an eclipse a religious experience. I call it cosmic.”

Thursday, August 3, 2017

Why plants represent untapped potential for innovative drug discovery

Northeastern chemistry graduate student John de la Parra poses with an aloe plant. He is collaborating with Emory ethnobotanist Cassandra Quave to explore the medicinal properties of plants. Photo by Matthew Mondoono/Northeastern University.

By Allie Nicodemo,
Northeastern University

The field of medicine has come a long way from using heroin as a cough remedy or magnet therapy to improve blood flow. These outdated methods were put to bed decades ago. But there are plenty of ancient medicinal practices that have stood the test of time. In fact, many of the life-saving pharmaceuticals we rely on today are derived from plants first discovered by indigenous communities.

Ethnobotany is the scientific study of traditional plant knowledge. It’s what gave us morphine, aspirin, and ephedrine, to name a few. And there is still untapped potential.

In a new paper published by Trends in Biotechnology, Northeastern University doctoral candidate John de la Parra and Emory University medical botanist Cassandra Quave described a new field called ethnophytotechnology. It’s the use of plant biotechnology to improve the plant-based drug discovery pipeline.

“New production, engineering, and analysis methods have made it easier to meet scientific challenges that have confronted traditionally used plant-derived medicines,” says de la Parra, who is earning his doctorate in chemistry. “It is our hope that as the field expands, rich troves of indigenous knowledge can find prominence within innovative drug discovery and production platforms.”

Quave and de la Parra are examining the vast opportunities for ethnobotany and ethnophytotechnology to promote new drug discovery and solve health challenges.

Read the full story about their recent paper on the Northeastern news site.

Related:
Brazilian peppertree packs power to knock out antibiotic-resistant bacteria

Tuesday, July 25, 2017

What UFO conspiracy theories reveal about American culture


Last spring, historian Felix Harcourt taught a class at Emory on how conspiracy theories about UFOs have shaped American culture. He began the class with a question: “How many people believe alien life exists?”

Most people in the class raised their hand. “I think so, too,” Harcourt said. “Stephen Hawking thinks so. In a giant universe there is a distinct probability that somewhere alien life has evolved. It probably looks pretty different from us, but it might be out there.”

But what about the idea that aliens have visited Earth? And stories of human complicity in those visits — usually of government complicity?

The multitude of UFO conspiracy theories are considered laughable and serious discussion of them is labeled as a cultural taboo, Harcourt said. “Even as they are treated as laughable, they’re some of the most widely believed conspiracy theories. If we go back to the sixties, Gallup polls find 96 percent of Americans had heard of UFOs, 46 percent believed that they were real. By 1973, 57 percent believed that UFOs were real. By the nineties, 71 percent believed that the government was at least hiding information about UFOs: 'They may or may not be real, but there’s definitely more going on there than the government is letting us know.' And those numbers remain relatively stable.”

A 2015 poll showed that 56 percent of American believe that UFOs are real and 45 percent believe aliens have visited Earth. “To put that into context,” Harcourt said, “in that same survey, 57 percent said that the Big Bang theory was real.”

Harcourt goes on to discuss how various UFO conspiracy theories in the 20th century have changed, often paralleling societal anxieties at the time. Click here to watch the entire class on C-SPAN’s lectures in history series.

Harcourt taught the class as part of a course, “Politics and Paranoia,” while he was a post-doctoral fellow at Emory’s Fox Center for Humanistic Inquiry.

Wednesday, July 19, 2017

Atlanta BeltLine benefits people and pollinators

Volunteers at work planting native flora along the Atlanta BeltLine walking and biking trail. (Photo by Trees Atlanta).

Judith Moen writes in Ensia Magazine about how the Atlanta BeltLine is serving as a model for the future of urban green space, driving economic, cultural and environmental renewal. Below is an excerpt from the article:

"Efforts to clean up 1,100 acres of contaminated brownfields and plant more than 3,000 indigenous trees and grasses are bringing back biodiversity not seen in decades.

"'The native plantings they have done had a tremendous positive impact,' says Berry Brosi, associate professor of environmental sciences at Emory University. 'We found enormous areas in terms of pollinator abundance.'

In fact, an unpublished study Brosi conducted found on average three times as many bee species and five times as many bees in pollinator planting sites along the BeltLine than in mowed grass.

'I noticed for the first time in my backyard, we are seeing bees, butterflies, even fireflies, which is different than four years ago,' says Chad Ralston, who lives nearby and bikes almost daily."

Read the whole article in Ensia.

Related:
Pollinator extinctions alter structure of ecological networks
The top 10 policies needed now to protect pollinators

Thursday, June 22, 2017

Mouse study suggests how hearing a warning sound turns into fearing it over time

Fluorescent tagging shows the perineuronal nets (in red) surrounding neurons (in green) of mice. Emory researchers identified a role these nets play in "capturing" an auditory fear association.

By Carol Clark

The music from the movie “Jaws” is a sound that many people have learned to associate with a fear of sharks. Just hearing the music can cause the sensation of this fear to surface, but neuroscientists do not have a full understanding of how that process works.

Now an adult mouse model reveals that changes in lattice-like structures in the brain known as perineuronal nets are necessary to “capture” an auditory fear association and “haul” it in as a longer-term memory. The journal Neuron published the findings by scientists at Emory University and McLean Hospital, a Harvard Medical School affiliate.

The findings could aid research into how to help combat veterans suffering from post-traumatic stress disorder (PTSD).

“We’ve identified a new mechanism — involving the regulation of perineuronal nets in an adult auditory cortex — that contributes to learning an association between an auditory warning and a fearful event,” says Robert Liu, a senior author of the study and an Emory biologist focused on how the brain perceives and processes sound. “It’s surprising,” he adds, “because it was previously thought that these perineuronal nets did not change in an adult brain.”

Another novel finding by the researchers: It’s not just activity in the auditory cortex during a fear-inducing experience associated with sound, but after the experience that is important for the consolidation of the memory.

“What is unexpected is that this brain activity was not in direct response to hearing the actual sound, since animals were just sitting in a quiet room during that period,” Liu says. “This finding could fit with an idea that’s been around for some time, that the way your brain consolidates memories of your day’s experiences is by replaying the events after they have happened.”

The amygdala — a region of the brain located within the temporal lobes — has long been tied to learning what stimuli can trigger emotional reactions such as fear. More recent studies have shown the firing of circuits in the auditory cortex during a threatening sound also play a role in learning what signals should set off a fear reaction.

The auditory part of the brain goes from the ear and cochlea through several stages to reach the auditory cortex — the highest neural processing level for sounds.

Perineuronal nets (PNN) are extracellular lattices that surround and stabilize neurons. During childhood development they have plasticity. “When they eventually mature, they crystalize, locking down the anatomy around the neurons and forming a kind of scaffold,” Liu says. “It’s been thought that these nets remained largely stable in adulthood.”

The mice used in the current research were trained to associate the sound of a tone with a mild shock. The animals eventually would freeze when they heard the sound, in anticipation of the mild shock. Days later, they continued to freeze at the sound even when the shock no longer followed it. The researchers found that, after the fear-association experience, a transition period lasting about four hours occured in which the PNN in the rodents’ auditory cortex changed to become stronger.

“We speculate that the strengthening of these nets — just like during development — may be putting a brake on further neural plasticity and ‘locking in’ the fear association before other sound experiences interfere with the memory,” Liu says.

When some mice in the study were given an enzyme that dissolved the PNN in the auditory cortex, they stopped remembering to freeze at the sound of the tone. “We essentially removed these nets and that appeared to prevent the fear association from consolidating in the memory, so it fell away faster,” Liu says. “It’s counterintuitive. Before we would have thought if we removed the PNN it would have increased the potential for learning the fear association by increasing the plasticity of the neurons.”

Such research could aid in the development of an intervention for PTSD. “It suggests that there may be a window of time after someone experiences a trauma that you could give them a drug to silence activity in a particular area of the brain,” Liu says. “That might prevent them from consolidating a particular traumatic memory.”

The findings also add to data about how the brain learns in general, and the relationship between receiving new information and a critical time period needed to consolidate it, he says.

First author of the study is Sunayana Banerjee, who conducted the research while she was a post-doctoral fellow at Emory. Co-senior author is Kerry Ressler – a psychiatrist focused on PTSD who was formerly with the Yerkes National Primate Research Center and Emory University and is now at Mclean Hospital and Harvard Medical School. Co-authors include research specialist Hadj Aoued and Emory undergraduates Vanessa Gutzeit, Justin Baman and Nandini Doshi. The research was supported by the National Institutes of Health grants R21MH102191 and R01DC008343 and the Office of Research Infrastructure Programs’ Primate Centers P51OD11132.

Related:
Sensory connections spill over in synesthesia
Uncovering secrets of sound symbolism

Wednesday, June 21, 2017

Pollinator extinctions alter structure of ecological networks

On the wings of National Pollinator Week, a new study by Emory biologist Berry Brosi gives insights into the dynamics of plant-pollinator interactions.

By Carol Clark

The absence of a single dominant bumblebee species from an ecosystem disrupts foraging patterns among a broad range of remaining pollinators in the system — from other bees to butterflies, beetles and more, field experiments show.

Biology Letters published the research, which may have implications for the survival of both rare wild plants and major food crops as many pollinator species are in decline.

“We see an ecological cascade of effects across the whole pollinator community, fundamentally changing the structure of plant-pollinator interaction networks,” says Berry Brosi, a biologist at Emory University and lead author of the study. “We can see this shift in who visits which plant even in pollinators that are not closely related to the bumblebee species that we remove from the system.” 

If a single, dominant species of bumblebee mainly visits an alpine sunflower, for instance, other pollinators — including other species of bumblebees — are less likely to visit alpine sunflowers. If the dominant bumblebee is removed, however, the dynamic changes.

“When the sunflowers became less crowded and more available, a broader range of pollinators chose to visit them,” Brosi says.

The field experiments, based in the Colorado Rockies, also showed that the removal of a dominant bumblebee species led to fewer plant species being visited on average.

“That was a surprise,” Brosi says. “If a nectar resource is abundant and highly rewarding, more types of pollinators will go for it, leaving out some of the rarer plants that some of the other pollinator species normally specialize in.”

The findings are important since most flowering plants and food crops need pollinators to produce seeds.

“Basically, for almost every pollinator group that we have good data for, we’ve seen declines in those pollinators,” Brosi says. “The results of our field experiments suggest that losses of pollinator species — at a local population level or on a global, true extinction scale — are likely to have bigger impacts on plant populations than previously predicted by simulation models.”

The experiments were done at the Rocky Mountain Biological Laboratory near Crested Butte, Colorado. Located at 9,500 feet, the facility’s subalpine meadows are too high for honeybees, but they are filled with a variety of bumblebees and other pollinators.

The study included a series of 20-meter-square wildflower plots. Each was evaluated in a control state, left in its natural condition, and in a manipulated state, in which bumblebees of just one species had been removed using nets. The bumblebees were later released unharmed when the experiments were over.

The work built on 2013 research led by Brosi that focused on bumblebees and one target plant species, alpine larkspur. That study showed how removing a bumblebee species disrupted floral fidelity, or specialization, among the remaining bees in the system, leading to less successful plant reproduction.

For the current paper, the researchers looked at a system of more than 30 species of pollinators and their interactions with 43 plants species.

“There’s been a lot of observational research done on plant-pollinator networks,” Brosi said. “One of the general findings is that they have a really consistent structure. That tends to hold true almost irrespective of ecosystem and geographic area, from the northeastern coast of Greenland to tropical rainforests.”

Mathematical simulation models have suggested that plant-pollinator networks would have good resiliency if there is an extinction in the system, based on the assumption that the network structure would remain consistent.

“Our experiments show that this assumption is not tenable,” Brosi says. “These networks are dynamic and when a pollinator species is missing, we’re going to see both qualitative and quantitative changes. Future simulation models need to incorporate ecological processes like competition that can shape which pollinators interact with which plants.”

Co-authors of the study are Kyle Niezgoda, who worked on the project as an undergraduate in Emory’s Department of Environmental Sciences, and Heather Briggs of the University of California, Santa Cruz.

Related:
Bees 'betray' their flowers when pollinator species decline
The top 10 policies needed now to protect pollinators

Monday, June 19, 2017

Mutant mosquitos make insecticide-resistance monitoring key to controlling Zika

"You can't stop evolution," Emory disease ecologist Gonzalo Vazquez-Prokopec says, explaining that it is a natural process for mosquitos to mutate in response to insecticides. (CDC photo by James Gathany)

By Carol Clark

One of the most common insecticides used in the battle against the Aedes aegypti mosquito has no measurable impact when applied in communities where the mosquito has built up resistance to it, a study led by Emory University finds.

The study is the first to show how vital insecticide-resistance monitoring is to control the Aedes mosquito — which carries the viruses that cause Zika, dengue fever and yellow fever.

The journal PLoS Neglected Tropical Diseases published the research.

“The results are striking,” says Gonzalo Vazquez-Prokopec, a disease ecologist at Emory and first author of the study. “If you use the insecticide deltamethrin in an area with high-deltamethrin resistance, it’s the same as if you didn’t spray at all. It does not kill the Aedes aegypti mosquitos. The efficacy is not different to a control.”

The results of the randomized, controlled trial are important because some public health departments in places where Zika and dengue viruses are endemic do not necessarily monitor for insecticide resistance.

“The recent epidemic of the Zika virus has raised awareness that we need to focus on what really works when it comes to mosquito control,” Vazquez-Prokopec says. “The data from our study makes a bold statement: Any mosquito-control program involving spraying insecticides needs to be based on knowledge of the current levels of insecticide-resistance of the local mosquitos.”

It is not difficult to determine levels of insecticide resistance, he adds. Public health workers can use standardized bioassays to coat a bottle with an insecticide in a specific dose. They can then introduce mosquitos from the area to be monitored into the bottles and observe the number of them killed after 24 hours.

The current study — conducted in three neighborhoods of Merida, Mexico — measured the efficacy of indoor residual spraying against adult Aedes aegypti mosquitos in houses treated with either deltamethrin (to which the local mosquitos expressed a high degree of resistance) or bendiocarb (another insecticide to which the mosquitos were fully susceptible), as compared to untreated control houses.

The bediocarb-treated areas showed a 60-percent kill rate for Aedes aegypti mosquitos during a three-month period, while the deltamethrin-treated areas and the control areas showed no detectable impact on the mosquitos.

A research technician sprays the ceiling and walls of a home in Merida, Mexico, as part of the first study to show how vital insecticide-resistance monitoring is to control a mosquito that can spread the Zika virus. (Photo by Nsa Dada)

It’s a natural biological process for mosquitos to mutate in response to insecticide exposure, Vazquez-Prokopec says. These mutations can occur at the molecular level, preventing the insecticide from binding to an enzymatic target site. They can also happen at the metabolic level — when a mosquito’s metabolism “up regulates” the production of enzymes that can neutralize the toxic effects of an insecticide.

“Both mechanisms can occur in the same mosquito,” Vazquez-Prokopec says, “making insecticide resistance a challenging and fascinating problem.”

Even more worrying are so-called “super bug” mosquitos, that show resistance to more than one insecticide.

“You can’t stop evolution,” Vazquez-Prokopec says. “That’s why it’s important for countries to have resistance-monitoring systems at both local and national levels to help manage the use of insecticides more efficiently and effectively.”

For the past 20 years, there has been a rise in resistance to insecticides in mosquitos, particularly in the Anopheles genus, some of which transmit the malaria parasite. Anopheles mosquitos only bite between dusk and dawn, so the use of bed nets in areas where malaria is endemic have long been a method to reduce the opportunity for mosquitos to transmit malaria.

More than a decade ago, bed nets treated with pyretheroids — a class of pesticides that includes deltamethrin — were rolled out in Africa in a big way to fight malaria. Pyretheroids are commonly used because they are odorless, cheap, long-lasting and have low mammalian toxicity.

The widespread use of insecticide-treated bed nets eventually led to a rise in resistance to pyretheroids by the Anopheles mosquito. The nets, however, still provide a physical barrier between people and mosquitos so they retain some benefit.

A similar rise in resistance is being seen in the Aedes mosquito in some areas. But the Aedes mosquitos bite during the day, making bed nets ineffective and insecticide spraying campaigns more critical to their control.

Previous research led by Vazquez-Prokopec showed that contact tracing of human cases of dengue fever, combined with indoor residual spraying for Aedes mosquitos in homes, provided a significant reduction in the transmission of dengue during an outbreak.

The insecticide-resistance study adds to the growing body of knowledge of what works — and what doesn’t — to control the Aedes mosquito in order to lessen the impact of a mosquito-borne disease outbreak, or to prevent one altogether.

“We’re always going to be chasing the problem of insecticide resistance in mosquitos, but the more data that we have — and the more tools we have in our arsenal — the more time we can buy,” Vazquez-Prokopec says.

Co-authors of the study include scientists from Mexico’s Autonomous University of Yucatán, where Emory has a long-standing collaboration. The work was funded by the Emory Global Health Institute and Marcus Foundation, the Centers for Disease Control and Prevention, Mexico’s CONACYT and the National Health Medical Research Council.

Related:
Contact tracing, with indoor spraying, can curb dengue outbreak
Zeroing in on 'super spreaders' and other hidden patterns of epidemics

Thursday, June 15, 2017

To boldly go where public health hasn't gone before

"Hopefully, Emory will make a mark in NASA history," says Yang Liu, associate professor of environmental health. (NASA photo)

From Rollins Magazine

Rollins School of Public Health researchers will soon take their research into orbit, partnering with the National Aeronautics and Space Administration (NASA) in a new satellite mission to study air pollution.

NASA chose Rollins as a joint recipient of its $100 million award — $2.3 million of which will come to Rollins — to study the effects of air pollution on the population through a satellite mission, according to Yang Liu, associate professor of environmental health. He noted that this is the first time a NASA space mission has incorporated a public health component.

"We're the scientific guinea pig," Liu said.

The Rollins research group, led by Liu, co-created the project idea with NASA's Jet Propulsion Laboratory (JPL). The mission will construct and use a Multi-Angle Imager for Aerosols (MAIA) device to record airborne particulate matter, which will collect data on the effects of pollution on public health from at least 10 locations with major metropolitan areas.

Once constructed by JPL, the MAIA device will be mounted on a compatible Earth-orbiting satellite. "Even though it's a small mission, it's actually the first ever in which we get to work with NASA engineers to build public health into the DNA of this instrument," Liu said.

The Rollins team will analyze the data to make predictions about public health issues such as birth outcomes and cardiovascular disease. The team will also serve as the public health liaison between JPL and other institutions in the complete research group. Recruited by Liu, the complete group has teams at University of California, Los Angeles, Harvard University, University of British Columbia, and University of Dalhousie.

Because the device will orbit via satellite, it will provide a more holistic view of air pollution data than the commonly used ground monitors.

"It's very difficult to cross to a completely different scientific community and convince them that this mission is not only worthwhile but also feasible," Liu said. "Hopefully, Emory will make a mark in NASA history."

Related:
Georgia Climate Project creates state 'climate research roadmap'

Wednesday, June 14, 2017

A disarming comedian interviews an Emory psychologist loaded with facts about the brain

Comedian Jordan Klepper, center, takes a break from filming in the Emory psychology department. He interviewed Emory psychologist Stephan Hamann, left, about the brain science involved in trying to understand the U.S. political divide and culture wars. (Photo by Carol Clark)

By Carol Clark

Why do some people have a liberal mindset while others seem set on conservatism? And what makes it so difficult to find common ground? Those are some of the questions explored in a one-hour special, “Jordan Klepper Solves Guns,” which aired recently on Comedy Central.

Comedian Jordan Klepper and a camera crew came to the Emory campus last October to film part of the program in the Department of Psychology. Klepper interviewed psychologist Stephan Hamann about his research into how the brain may influence whether people are on one end of the political spectrum or the other, and how we might use this knowledge to better understand one another. 

“People develop their beliefs over a lifetime,” Hamann explains, “and when you tell them something that they feel challenges those core beliefs, they can have a threat response and just shut down. Brain research shows how they stop processing information on a rational level and begin operating on a more emotional level. Of course, that’s the exact opposite of what you want them to do.”

The best way to try to discuss an idea that counters someone’s convictions is to go slow and lay the ground work, he adds. “You have to be as empathetic and compassionate as possible. That’s the first step. You have to earn someone’s trust before you jump to the argument.”

Klepper also underwent an fMRI scan of his own brain in Emory’s Facility for Education and Research in Neuroscience (FERN).

“The program did a good job of conveying a little bit of the science involved in brain imaging,” Hamann says. “These are challenging times, so it’s gratifying to be part of something aiming 5o help Americans find common ground. I like the way the program ended on a positive note, trying to get people to connect up with the political process.”

If you missed the broadcast, you can watch it on Klepper’s web site, JordanKlepperSolves.com.

Tuesday, June 13, 2017

The neuroscience of learning across borders

Brains without borders: Emory Laney Graduate School student Charlie Ferris, from psychologist Stephan Hamann's lab, poses with a brain sculpture at the Institute of Neurobiology in Querétaro, Mexico, during the recent Binational Mechanisms of Learning Forum. (Photo by COMEXUS) 

By Carol Clark

Jessica Dugan sits at a computer in the Emory University psychology department in Atlanta, training a rhesus monkey in a lab at a university in Querétaro, Mexico, on the concept of transitive inference. 

She watches the monkey in real-time on her screen. With a few clicks on her keyboard she can present the monkey with random images on a computer attached to its cage and see which image it chooses. The monkey is automatically rewarded with food pellets for correct choices. Eventually, the monkey begins to grasp that the computer “game” is based on a concept of transitive inference — the idea of a hierarchy based on a shared property.

“It’s pretty cool,” Dugan says. “As long as there’s a wi-fi connection, we can remotely put a monkey on task and conduct a training exercise or an experiment. Technology can make collaboration across countries a lot easier.”

The joint project between Emory and the National Autonomous University of Mexico (UNAM) Institute for Neurobiology is just one more in a series of doors opening for Dugan, leading to new ways of learning science and conducting research.

She entered Emory’s Laney Graduate School under the mentorship of psychologist Patricia Bauer, who focuses on human development of memory from infancy through childhood. Dugan is particularly passionate about designing and conducting experiments with children to get at some of the key questions surrounding metacognition — introspection about thought processes.

“Basically, I’m interested in how someone thinking about thinking may be able to improve their ability to learn new information,” she explains. “Self-generation of new knowledge is something that we use every day. It’s a process that’s critical to success in education and beyond.”

Dugan is simultaneously working with rhesus monkeys in the lab of Emory psychologist Robert Hampton. “Studying the cognition of the relatives of our earliest ancestors may help us understand if there was some evolutionary demand that led to us being able to perform certain cognitive tasks,” she says.

And now she’s broadened her horizons by working across countries through the UNAM collaboration.

In May, Dugan was part of a group of 15 Emory graduate students who traveled to Mexico for the UNAM Binational Mechanisms of Learning Forum. The forum was the capstone of a year-long graduate seminar held at both Emory and UNAM called “Mechanisms of Learning Across Species and Development.”

Emory psychologist Patricia Bauer, left, listens as Maria Jose Olvera, a graduate student from the Institute of Neurobiology, explains her research. (Photo by COMEXUS)

“It was an amazing experience,” Dugan says of the nearly week-long forum. “The neuroscience they are doing in Mexico is impressive. It makes me wonder why in the United States we tend to mainly focus on science done here or in Europe. It was as though I was watching a documentary about the cosmos and someone started describing our place on Earth and the camera zoomed out so you realized how small that we are. The Mexico forum gave me a much more universal perspective.”

“We want our students to have an international appreciation for science, so they’re not so America-centric,” Bauer says. “There are lots of things to learn from other parts of the world.”

Bauer co-taught the Mechanisms of Learning seminar in Atlanta this year with Emory psychologist Joseph Manns, and both also traveled to Mexico to participate in the forum. 

Meanwhile, Hampton co-taught the seminar to graduate students in Mexico with UNAM neuroscientist Hugo Merchant, who also researches rhesus monkeys. Hampton is on sabbatical from Emory and has been living in Querétaro and working at the Institute of Neurobiology for the past academic year, funded by the Fulbright Scholars Program.

“The idea is not just to exchange information that makes our science stronger,” Hampton says. “Mexico is a country with a huge border with the United States. We need to have more contact with one another so that we understand each other better and reduce the potential for conflicts between our two countries.”

Emory graduate student Kelly Chong, a member of the lab of biologist Robert Liu, discusses her research with Arturo Gonzalez Isla, a graduate student at the Institute of Neurobiology in Mexico. (Photo by COMEXUS)

UNAM, based in Mexico City, is one of the largest universities in the world, with nearly 400,000 students and faculty. Its Institute for Neurobiology is about three hours north in Querétaro, a small but growing city in the highlands of central Mexico.

“The air is a little bit thinner and the sun’s a bit stronger than in Atlanta,” Hampton says. “It’s ‘tranquillo’ — a calm place — with a high quality of life.”

The institute “is doing the full spectrum of neuroscience,” he adds, “from high-level primate cognition work to molecular biology, neuroanatomy, neurodevelopment and more.”

While most classes are taught in Spanish, the Mexican students are required to both read and publish scientific papers in English.

Emory has hosted the Mechanisms of Learning Forum for the past three years as a capstone to the graduate seminar and as part of a training program co-directed by Bauer and Hampton, funded by the National Institutes of Health.

This year, with Hampton based in Mexico, the decision was made to hold the forum in Querétaro, with funding from the Institute of Neurobiology and Emory's Halle Institute, Department of Psychology and Emory College. The U.S. Embassy in Mexico, Mexico’s National Association of Universities and Institutions of Higher Education (ANUIES), and COMEXUS — the Fulbright Scholars Program supporting Hampton’s sabbatical — also pitched in to support the event.

Thirty-three graduate students from the U.S. and Mexico came together with nine faculty guest speakers from institutions in both countries to discuss their work. The speakers covered topics ranging from human language learning, avian song learning, rodent motor learning and the electrophysiology of memory in adult humans.

“It was a phenomenal opportunity,” says Emory graduate student Emily Brown, who had never been to Mexico. “The best part of the experience for me was meeting the other graduate students and expanding my scientific network to another country. It was neat to see that they are facing similar challenges as graduate students in the United States, and doing similar research.”

A central part of the forum is an open-ended hypothesis-generating exercise. “You get together with people from different backgrounds whom you don’t normally get to bounce ideas off,” Brown explains. “It’s a chance to play with ideas across boundaries and disciplines. The aim is to be creative and to not reject something that may sound a little crazy at first. Instead, you brainstorm about possible techniques or strategies that might make it work. It’s expansive thinking that you don’t necessarily get to do on a day-to-day basis.”

“It’s a great exercise,” Dugan adds, “because as a graduate student you spend a lot of time cranking out things that have to be immediately useful. You can get stuck in a mindset of what won’t work. It’s beneficial to get together with people who have different passions and just think creatively.”

Emory graduate student Emily Brown in the Advanced Facility for Avian Research in Ontario with one of her research subjects — a black-capped chickadee. "The people more likely to make the big discoveries are those willing to talk to each other across labs, institutions and countries," Brown says.

Creative thinking has already led Brown into unexpected places. She began her graduate school career studying memory systems of rhesus monkeys in the Hampton lab, and thought she would stick to that path. Then she began hearing about memory work with wild birds and proposed a research project in collaboration with Hampton and Emory psychologist Donna Maney, who is focused on how genes, hormones and the environment affects the brains of birds.

One of the guest speakers at the 2014 Mechanisms of Learning Forum was David Sherry, an expert on bird cognition from the University of Western Ontario’s Advanced Facility for Avian Research in London, Ontario. Brown was inspired by his talk and ultimately able to expand her collaboration to include Sherry. She is now continuing as a graduate student at Emory while in the Sherry lab in Canada.

“It’s one of the top avian research facilities in the world,” Brown says. “I’m developing a technique to study memory and cognition in wild, free-living birds. Right now, I’m working with black-capped chickadees, which are known for taking bits of food, hiding them for later, and then using their memory to locate them. Ideally, the techniques I’m developing could be used with any small songbirds that you see coming to a feeder in your yard.”

Birds make a good model species because they are so widespread and their behavior in the wild is well-documented, she says. “You have some bird species that are closely related living in dramatically different ecosystems and those that are not closely related at all operating in similar ecosystems. So you can compare which cognitive functions of species might be more driven by the environment and the pressures that they’re facing there.”

Adding Mexico to the mix of her graduate school experiences seemed like a natural progression to Brown. “Scientists are doing science everywhere and we shouldn’t be closed off to each other because of some borders on a map,” she says. “Science is advanced by communication. The people more likely to make the big discoveries are those willing to talk to each other across labs, institutions and countries.”

And the talk doesn’t always have to be about work.

A highlight for Brown in Mexico was a social outing — a hike through a wildlife preserve with the host students. “I had a chance to see a lot of the local flora and fauna,” she says. “It’s a really different ecosystem than Atlanta or Ontario. It’s dry, full of cactuses and vermillion flycatchers. They’re very pretty birds.”

Dugan agrees that breaking down barriers is important to the future of science. “The science community is all over the world,” she says. “Science in general is in jeopardy right now but we’re stronger together. People around the world are benefitting from — and contributing to — scientific progress.”

Related:
Global bonds boosts chemists' pace of research and discovery
Students advocating for academic science